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Abstract

We consider multiple curvilinear cracks in the two-dimensional general anisotropic solids and establish a compu-

tationally effective technique to determine the stress intensity factors accurately. Each curvilinear crack is represented

by a collection of straight crack elements and the crack opening displacement (COD) by the continuous distribution of

the dislocation dipoles. The crack element located next to the crack tip is called the crack tip singular element (CTSE),

where the known
ffiffi
r

p
crack tip opening displacement and the 1=

ffiffi
r

p
stress singularity is mathematically built in the

interpolation of the COD using the Chebyshev polynomials. The regular crack elements away from the crack tip use the

quadratic polynomial interpolation for the CODs.

Simple analytical formulas for the displacement, traction, and the stress intensity factor (SIF) contributions for the

CTSE are developed in terms of its own COD coefficients. Since the SIFs are obtained during the main processing no

post processing is required; a distinct advantage over the powerful quarter-point element. Numerical results are given

for several multiple curvilinear crack problems to demonstrate the accuracy and simplicity of the technique.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

We will develop the boundary element method for the mixed mode fracture analysis of multiple

curvilinear cracks in the general anisotropic solids in two dimensions. Under the assumption of the

generalized plane strain three modes, in-plane Mode I, II, and out-of-plane Mode III, of fracture could

be coupled. Such a coupling is found in the fracture analysis of the triclinic, monoclinic and trigonal
crystal systems. The other crystals which have a plane of symmetry normal to the x3-axis (i.e., the out-of-

plane axis) also exhibit this coupling when their crystal axes are rotated out of the symmetry position.
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The majority of the existing BEM for the two-dimensional fracture analysis for the anisotropic solids

have dealt with the decoupled cases of the plane strain and stress (Snyder and Cruse, 1975; Sollero and

Aliabadi, 1993; Denda, 1999). The coverage of the generalized plane strain in the fracture analysis is

limited (Ang and Clements, 1986; Berger and Tewary, 1997; Tan et al., 1992; Denda, 2001; Denda and
Mattingly, 2003). With the exception of Denda (2001) and Denda and Mattingly (2003), who have

addressed the full coupling of the three modes, all others dealt with simpler decoupled cases in the

generalized plane strain.

In modeling of the crack tip singularity in anisotropic solids Snyder and Cruse (1975) used the

Green�s function for the single crack which calculated the stress intensity factors analytically without

modeling the crack surface. Tan and Gao (1992) used the quarter-point traction and displacement crack

tip elements from which the analytical expressions for the stress intensity factors were derived. The dual

boundary element method of Sollero and Aliabadi (1993) used the J-integral and the dislocation dipole
approach of Denda (1999, 2001) adopted the conservation integral developed by Chen and Shield (1977)

to calculate SIFs, respectively. Despite an excellent accuracy of the SIF results by the conservation

integrals, the post-processing requirement is an extra burden for the multiple cracks problems. The

Green�s function approach does not require the post-processing since it uses the analytic expression for

the SIF; however, the method is limited to single straight crack problems. In extending the dislocation

dipole approach of Denda (1999, 2001), Denda and Mattingly (2003) interpolated the crack opening

displacement (COD) of a single straight crack with the product of the
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � X 2

p
weight function and

Chebyshev polynomials and obtained the analytical SIF formula in terms of the COD coefficients of the

polynomials, where X is the local crack coordinate along the crack of half length a. This crack element

is called the whole crack singular element (WCSE). Since the analytical formula gives the SIFs as an

integral part of the solution the post-processing is not required. The corresponding WCSE for the

isotropic solids was developed by Denda and Dong (1997). Although the WCSE can handle multiple

straight center cracks effectively, it has no capability for the edge and curvilinear cracks. For isotropic
solids, Denda and Dong (1999) proposed the crack tip singular element (CTSE), which is a small WCSE

element embedded at each crack tip, to extend the capability of the WCSE to multiple curvilinear

cracks.

The objective of this paper is to develop the crack tip singular element for the general anisotropic solids

in 2-D. The CTSE is placed locally at each crack tip on top of the ordinary non-singular crack elements that

cover the entire crack surface. Any curvilinear cracks, including center and edge cracks, can be modelled

rectilinearly. Since the quarter-point element does not provide an analytical formula for the stress intensity

factor, an indirect procedure, such as the J-integral, must be used to calculate the stress intensity factor. The
CTSE overcomes this disadvantage of the quarter-point element by providing the SIF as an integral part of

the main solution. It is an ideal fracture analysis tool for 2-D multiple curvilinear cracks in the general

anisotropic solids.
2. Stroh formalism for 2-D general anisotropic solids

We consider the generalized plane strain problem where the displacement components ui (i ¼ 1; 2; 3)
depend only on two coordinates x1 and x2. Replace the pair of suffices by the single suffix according to

(11fi 1), (22fi 2), (33fi 3), (23fi 4), (31fi 5), (12fi 6) for the stress, strain and compliance components.

The non-zero stain components are given by
e1 ¼
ou1
ox1

; e2 ¼
ou2
ox2

; e4 ¼
ou3
ox2

; e5 ¼
ou3
ox1

; e6 ¼
ou2
ox1

þ ou1
ox2

ð1Þ
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and the strain–stress relations by
eM ¼
X6

N¼1

SMNrN ðM ;N ¼ 1; 2; 4; 5; 6Þ; ð2Þ
where SMN is the reduced compliance defined by
SMN ¼ sMN � ðsM3s3N Þ=s33 ðM ;N ¼ 1; 2; 4; 5; 6Þ ð3Þ
in terms of the 3-D compliance constants sMN (M ;N ¼ 1; 2; 3; 4; 5; 6). In this paper, the summation over an
index is indicated explicitly without using the summation convention for the repeated indices.

The displacement ui and the stress function /i are given in the form (Lekhnitskii, 1963; Eshelby et al.,

1953)
ui ¼ 2R
X3

a¼1

AiafaðzaÞ; /i ¼ 2R
X3

a¼1

LiafaðzaÞ ð4Þ
in terms of three analytic functions f1ðz1Þ, f2ðz2Þ and f3ðz3Þ of the generalized complex variables
za ¼ x1 þ pax2 for a ¼ 1; 2; 3. Here pa, along with their conjugates, are the three distinct roots of the sixth-

order polynomial characteristic equation
dð4ÞðpÞdð2ÞðpÞ � dð3ÞðpÞdð3ÞðpÞ ¼ 0; ð5Þ
where
dð4ÞðpÞ ¼ p4S11 � 2p3S16 þ p2ð2S12 þ S66Þ � 2pS26 þ S22;

dð3ÞðpÞ ¼ p3S15 � p2ðS14 þ S56Þ þ pðS25 þ S46Þ � S24;

dð2ÞðpÞ ¼ p2S55 � 2pS45 þ S44:
The coefficients Lia in (4) are given, as the the components of 3 · 3 matrix L, by
L ¼ ½Lia� ¼
�p1L21 �p2L22 �p3r3L33
L21 L22 r3L33
r1L21 r2L22 L33

2
4

3
5; ð6Þ
where
r1 ¼
dð3Þðp1Þ
dð2Þðp1Þ

; r2 ¼
dð3Þðp2Þ
dð2Þðp2Þ

; r3 ¼
dð3Þðp3Þ
dð4Þðp3Þ

: ð7Þ
Let la ¼ fL1a; L2a; L3agT represent ath column of the matrix L. The coefficients Aia in (4) are given as the

components of the 3 · 3 matrix A defined by
A ¼ ½a1; a2; a3�; ð8Þ
where
aa ¼
A1a

A2a

A3a

8<
:

9=
; ¼

s16 � s11pa; s12; s14 � s15pa
s26 � s21pa

pa
;
s22
pa

;
s24 � s25pa

pa
s56 � s51pa; s52; s54 � s55pa

2
64

3
75

L1a
L2a
L3a

8<
:

9=
; ða ¼ 1; 2; 3Þ: ð9Þ
Note that for each characteristic root pa we determine vectors la ¼ fL1a; L2a; L3agT and aa ¼ fA1a;A2a;A3agT
up to an arbitrary multiplying factor, which can be normalized by (Denda, 2001) the relation
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2
X3

i¼1

LiaAia ¼ 1 ða ¼ 1; 2; 3Þ: ð10Þ
The stress components rij are given by
r1i ¼ � o/i
ox2

; r2i ¼
o/i
ox1

: ð11Þ
3. Direct formulation of the BEM

Consider a finite domain R bounded by the contour oR where the displacement uj and the traction tj are
applied. We adopt the physical interpretation of Somigliana�s identity (Denda, 2001; Altiero and Gavazza,

1980; Eshelby, 1969) to formulate the direct BEM in terms of the distributions of line forces tj and dis-

location dipoles uj, respectively, over oR embedded in the infinite domain. The two fundamental solutions,

the line force and the dislocation dipole, are obtained using the Stroh formalism outlined in the previous

section. A line force in xk direction at (g1; g2) gives rise to the displacement component in the xj direction at

(x1; x2)
Gjkðx1; x2; g1; g2Þ ¼ I
1

p

X3

a¼1

AjaAka lnðza � naÞ; ð12Þ
where za ¼ x1 þ pax2 and na ¼ g1 þ pag2 (a ¼ 1; 2; 3) and I is the imaginary part of a complex variable. The

dislocation dipole is an infinitesimal segment (dg1; dg2) of length ds over which a displacement jump is

prescribed. For a dislocation dipole at (g1; g2) in xk direction, the resulting displacement component in xj
direction at (x1; x2) is given by
GðdÞ
jk ðx1; x2; g1; g2Þds ¼ �I

1

p

X3

a¼1

AjaLka
dna

za � na
; ð13Þ
where dna ¼ dg1 þ padg2. The detailed derivation of these solutions are given by Denda (2001).

The original boundary is discretized and approximated by a set of straight lines. The boundary dis-

placement and traction are interpolated by the quadratic function. Since all the boundary integrals are

evaluated analytically the resulting boundary equations are algebraic rather than integral equations. There

is no need to deal with the singular and the hypersingular integrals. The explicit formulas for the dis-

placement, displacement gradient, stress and the traction for generalized plane strain can be found in

Denda (1999, 2001). Otherwise we follow the standard procedure of the direct BEM implementation as
discussed by Denda (2001).
4. Crack modeling

4.1. Regular crack element

A crack C with the crack opening displacement dk of a traction-free crack in an infinite body is repre-

sented by the continuous distribution of the dislocation dipoles with the magnitude dk (Denda, 2001). The
displacement due to the crack is given by multiplying dk to the fundamental dislocation dipole solution (13)

and integrating over C to get
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uðdÞj ðx1; x2Þ ¼ �I
1

p

Z
C

X3

a¼1

Aja
X3

k¼1

Lkadk
dna

za � na
; ð14Þ
where na ¼ g1 þ pag2. Similarly, we can get the stress function
/ðdÞ
j ðx1; x2Þ ¼ �I

1

p

Z
C

X3

a¼1

Lja
X3

k¼1

Lkadk
dna

za � na
: ð15Þ
We approximate the curvilinear crack C by a collection of straight crack elements Ck
C ¼
XN
k¼1

Ck: ð16Þ
If we interpolate the crack opening displacement for each crack element Ck by the quadratic polynomial we

can evaluate the integrals (14) and (15) for each element analytically (Denda, 1999, 2001). Since no crack tip

singularity is built in, this crack element is called the regular crack element (RGCE). The use of the RGCEs

requires the fine near crack tip mesh along the crack to simulate the high crack opening displacement
gradient there. To determine the crack opening displacement dk, we use the traction formula and set the

traction zero on one of the crack surfaces. This system of traction boundary equations will be coupled with

another system of boundary equations if the the finite non-crack boundary is present and yet another

system of traction boundary equations in the presence of multiple cracks. Since the crack tip singularity is

not built into the interpolation, the post processing, such as the use of conservation integrals, is required to

determine the stress intensity factors as demonstrated by Denda (1999, 2001). In the following sections we

present alternative techniques for crack modeling using the whole crack singular elements and the crack tip

singular element, each of which models the crack tip singularity analytically and provides the analytical
formula for the stress intensity factors.
4.2. Whole crack singular element

Let C be a straight crack in an infinite body subject to the traction tþ and t�ð¼ �tþÞ on its faces. It is
located in the interval (�1;þ1) of the horizontal coordinate axis, where na ¼ g1 for all values of a (¼ 1; 2; 3)
because g2 ¼ 0. Eqs. (14) and (15) can be written as
uðdÞj ðx1; x2Þ ¼ I
1

p

Z þ1

�1

X3

a¼1

Aja
X3

k¼1

Lkadkðg1Þ
dg

g1 � za
;

/ðdÞ
j ðx1; x2Þ ¼ I

1

p

Z þ1

�1

X3

a¼1

Lja
X3

k¼1

Lkadkðg1Þ
dg

g1 � za
:

ð17Þ
To embed the
ffiffi
r

p
crack opening displacement behavior at each crack tip we introduce the interpolation
dkðg1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

1

q XM
m¼1

dðmÞ
k Um�1ðg1Þ; ð18Þ
where Um�1ðg1Þ is Chebyshev polynomial of the second kind and M is the number of polynomials. Sub-

stitute (18) into (17) and evaluate the integrals analytically to get
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uðdÞj ðx1; x2Þ ¼ �I
XM
m¼1

X3

a¼1

Aja
X3

k¼1

Lkad
ðmÞ
k RmðzaÞ;

/ðdÞ
j ðx1; x2Þ ¼ �I

XM
m¼1

X3

a¼1

Lja
X3

k¼1

Lkad
ðmÞ
k RmðzaÞ;

ð19Þ
where
RmðzaÞ ¼ za

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzaÞ2 � 1

q �m

ðmP 1Þ: ð20Þ
For the crack with half-crack length a, the interpolation and the results are still given by (18)–(20) if we

replace g1 with E1 ¼ g1=a and za with Za ¼ za=a, respectively. The corresponding stress components are

obtained by substituting (19), with the argument Za, into (11) with the result
rðdÞ
2j ðx1; x2Þ ¼ � 1

a
I
XM
m¼1

X3

a¼1

Lja
X3

k¼1

Lkad
ðmÞ
k mGm�1ðZaÞ;

rðdÞ
1j ðx1; x2Þ ¼

1

a
I
XM
m¼1

X3

a¼1

paLja
X3

k¼1

Lkad
ðmÞ
k mGm�1ðZaÞ;

ð21Þ
where
Gðm�1ÞðZaÞ ¼ �
Za �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZaÞ2 � 1

q� �m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZaÞ2 � 1

q ðmP 1Þ: ð22Þ
The limiting value of the traction on the crack line is given by
ðtjÞ�ðX1Þ ¼ � 1

a
I
XM
m¼1

X3

a¼1

Lja
X3

k¼1

Lkad
ðmÞ
k mUm�1ðX1Þ ðjX1j6 1Þ; ð23Þ
where X1 ¼ x1=a and the superscripts þ and ) indicate limits from above and below the horizontal coor-

dinate axis, respectively. From the limiting value of the stress on the crack line in front of each crack tip at

X1 ¼ �1 we get the stress intensity factors
Kjð�1Þ ¼
ffiffiffi
p
a

r
I
XM
m¼1

ð�Þmþ1m
X3

a¼1

Lja
X3

k¼1

Lkad
ðmÞ
k ; ð24Þ
where K2 ¼ KI (Mode I), K1 ¼ KII (Mode II) and K3 ¼ KIII (Mode III). Note that (23) is the formula used to

determine the crack opening displacement by setting the left-hand side to the known traction value. Once
the COD is determined formula (24) can be used to calculate the SIFs.

When multiple straight center cracks are present in the infinite body we introduce the local coordinate

system for each crack such that the crack is centered at the origin and aligned with the horizontal axis. The

formulas (17)–(24) still apply if we calculate the compliance tensor, characteristic roots, and matrices L and

A in the local rotated coordinate system. The local components obtained by these formulas must be

transformed to the global component before they are added to the contributions from other cracks. When

the finite boundary is present the coupling of the boundary equations and the crack surface traction

equations present the overall system of equations to be solved for the unknown boundary displacement/
traction and the crack opening displacement. The results of crack analysis for multiple straight cracks have

been reported by Denda and Mattingly (2003).



Y
XA

B

+1

-1
A1

A2

\

1.76" 

1.76" 

1.30" 

RGCE

CTSE+RGCE

RGCE

A

BC

Fig. 1. Crack tip singular element (CTSE) AA1 superposed on the regular crack elements (RGCEs).
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4.3. Crack tip singular element

We extend the use of the WCSE, which is limited so far to straight center cracks, to curvilinear and/or

edge cracks. Discretize the original curvilinear crack into a collection of multiple straight crack elements as

shown in Fig. 1; the crack opening displacement in each element is interpolated by the quadratic poly-

nomial. This is the regular crack element scheme introduced earlier, which is a complete scheme by itself but

lacks the ability to model the crack tip singularity analytically. So we modify the crack tip element AA1 (Fig.

1) by superposing the whole crack singular element AAðsÞ
1 on top of the existing regular crack tip element

AAðrÞ
1 to embed the correct singular behavior at the crack tip A. The size of the WCSE AAðsÞ

1 is selected small
enough (compared to the crack length) so that only one term of the interpolation (18) is sufficient. The

WCSE used at the crack tip with only one term of interpolation is called the crack tip singular element

(CTSE). A center crack has two CTSEs, while an edge crack has one. A set of simple formulas for the

CTSE, obtained by setting M ¼ 1 in the results of the WCSE, is summarized below. Introduce the local

coordinate system ðx1; x2Þ with the origin at the center of the CTSE. The generalized complex variables are

defined by za ¼ x1 þ pax2, where pa (a ¼ 1; 2; 3) are the characteristic roots in the local coordinate system.

The CTSE is located in the interval ð�a;þaÞ along the x1-axis whose positive direction points toward the

crack tip as shown in Fig. 1. The crack opening displacement is interpolated by
dkðX1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X 2

1

q
dð1Þ
k ; ð25Þ
where X1 ¼ x1=a. The displacement and the stress function contribution are given by
uðdÞj ðx1; x2Þ ¼ �I
X3

a¼1

Aja
X3

k¼1

Lkad
ð1Þ
k R1ðZaÞ;

/ðdÞ
j ðx1; x2Þ ¼ �I

X3

a¼1

Lja
X3

k¼1

Lkad
ð1Þ
k R1ðZaÞ;

ð26Þ
where
R1ðZaÞ ¼ Za �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZaÞ2 � 1

q
; ð27Þ
and Za ¼ za=a. The limiting value of the traction on the crack line is given by
ðtjÞ�ðX1Þ ¼ � 1

a
I
X3

a¼1

Lja
X3

k¼1

Lkad
ð1Þ
k ðjX1j6 1Þ ð28Þ
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and the stress intensity factors by
Kjðþ1Þ ¼
ffiffiffi
p
a

r
I
X3

a¼1

Lja
X3

k¼1

Lkad
ð1Þ
k ; ð29Þ
where K2 ¼ KI (Mode I), K1 ¼ KII (Mode II) and K3 ¼ KIII (Mode III).
Note that the CTSE provides the 1=

ffiffi
r

p
stress singularity at its two ends A and A1 in Fig. 1. While the

singularity at A reflect the true crack tip singular behavior, the singularity at A1 is spurious, i.e., within the

element the stress varies like 1=
ffiffiffi
q

p
near A1, where q is the distance from A1. Note also the stress contri-

bution from the superimposed regular element AAðrÞ
1 varies like 1=q near A1, which is stronger singularity

than the spurious 1=
ffiffiffi
q

p
singularity. Thus if we select the collocation point of the regular crack element AAðrÞ

1

off a small distance q away from A1, the effect of the spurious 1=
ffiffiffi
q

p
singularity at A1 is overwhelmed by that

of stronger 1=q singularity. Since such a selection of the collocation point is the standard procedure of the

discontinuous element, we can justify the use of the CTSE. The suggested offset distance for the discon-
tinuous element is between 1/40 and 1/20 of the element size. Extension of the above results to multiple

curvilinear cracks in the presence of the finite boundary requires the consideration of the coupling among

cracks and the boundary, which is performed in a straightforward fashion.
5. Numerical results

The crack opening displacement is modelled by the regular crack elements (RGCEs) over the entire

crack segment first. Additional accuracy is provided by further introducing the crack tip singular element

(CTSE) for each crack tip element. The accuracy of the numerical results depends both on the CTSE and

the selection of the regular crack elements. Denda (1999, 2001) used the regular crack elements to model

curvilinear cracks in the main processing and determined the SIFs using the conservation integral of Chen

and Shield (1977) in the post processing. The remarkable accuracy of the SIF results by Denda (1999, 2001)
is a testimony of the reliability of the regular crack element; even without using the CTSE the numerical

results are quite accurate. However, the post processing evaluation of the conservation integrals is required

to get the stress intensity factors. The CTSE eliminates this post processing requirement. In the following

the results by the CTSE will be compared primarily with those by the RGCE with the conservation integral

to demonstrate the accuracy of the CTSE.

Several crack element meshes for a center (in an infinite body) and an edge crack (in a semi-infinite body)

under uniaxial tension are studied for isotropic solids. The degenerate (or coincident) characteristic roots of

the isotropic material are made distinct by slightly perturbing the compliance coefficients. Fig. 2 shows
typical crack element meshes for a center crack of length 2a, where c is the crack tip element size. Fig. 3
c=a

c=1/2 a

c=1/4 a

c=1/8 a

c=1/16 a

2a

Fig. 2. Symmetric crack elements for a center crack.
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shows two sets of symmetrical and asymmetrical crack elements for an edge crack of length a. The

asymmetrical element recognizes the absence of singularity at the crack mouth and adopts the arrangement

used for one half of the center crack. The results are summarized in Tables 1 and 2 and compared with

those obtained by the isotropic CTSE of Denda and Dong (1997). The agreement is near perfect between
the two sets of results giving the confidence on the new CTSE for anisotropic solids. The recommendation

based on this study is to use the symmetric mesh with c ¼ 1=16a (Fig. 2) for the center crack and the

asymmetric mesh with c ¼ 1=16a (Fig. 3(b)) for the edge crack. If we define the near crack tip segment to be

one half of a straight center crack or the whole of a straight edge crack, then the recommendation is to

select c to be 1/16 of the near crack tip segment length. Unless mentioned otherwise, we will use these

meshes below.

In the following examples, we select aluminum crystal (cubic) as the model anisotropic solid. Originally

the crystal axes a1, a2 and a3 of the cubic lattice are aligned along the coordinate axes x1, x2 and x3. Then we
rotate the axes three times: h, w and /. First rotate the coordinate system through an angle h about the x3-
axis, then an angle w about the rotated x2-axis, and finally an angle / about the rotated x3-axis. Four
compliance matrices produced this way are given by
s½0;0;0� ¼

s11 s12 s13 s14 s15 s16
s22 s23 s24 s25 s26

s33 s34 s35 s36
s44 s45 s46

s55 s56
s66

2
6666664

3
7777775
¼

15:9 �5:8 �5:8 0 0 0

15:9 �5:8 0 0 0

15:9 0 0 0

35:2 0 0

35:2 0

35:2

2
6666664

3
7777775
; ð30Þ
c=1/2 a

c=1/4 a

c=1/8 a

c=1/16 a

c=1/32 a

a

(a)

c=1/4 a

c=1/8 a

c=1/16 a

c=1/32 a

a

(b)

Fig. 3. (a) Symmetric and (b) asymmetric crack elements for an edge crack.



Table 1

The effect of crack tip singular element size on the stress intensity factor KI=Kanal
I of a center crack (Fig. 2) in an infinite isotropic plate

under uniaxial tension, where Kanal
I is the analytical solution

c ¼ a 1.010(1.010)

c ¼ a=2 1.006(1.006)

c ¼ a=4 1.003(1.003)

c ¼ a=8 1.001(1.001)

c ¼ a=16 1.000(1.000)

c ¼ a=32 0.999(0.999)

c ¼ a=64 0.999(0.999)

The values in the parentheses are obtained by the isotropic CTSE (Denda and Dong, 1999).

Table 2

The effect of crack tip singular element size on the stress intensity factor KI=Kanal
I of an edge crack (Fig. 3) in a semi-infinite isotropic

plate under uniaxial tension r, where Kanal
I ¼ 1:12r

ffiffiffiffiffiffi
pa

p
is the analytical solution

Symmetrical mesh Asymmetrical mesh

KI=Kanal
I KI=Kanal

I

c ¼ a=2 1.011(1.010) 1.011(1.010)

c ¼ a=4 1.006(1.006) 1.006(1.007)

c ¼ a=8 1.004(1.004) 1.004(1.004)

c ¼ a=16 1.002(1.002) 1.003(1.003)

c ¼ a=32 1.001(1.001) 1.002(1.002)

c ¼ a=64 1.000(1.000) 1.002(1.002)

c ¼ a=128 1.000(1.000) 1.001(1.001)

c ¼ a=256 0.999(0.999) 1.001(1.001)

The values in the parentheses are obtained by the isotropic CTSE (Denda and Dong, 1999).
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s½30;0;0� ¼

14:362 �4:2625 �5:8 0 0 �1:7754
14:362 �5:8 0 0 1:7754

15:9 0 0 0

35:2 0 0

35:2 0

41:35

2
6666664

3
7777775
; ð31Þ

s�
45;arccos 1ffiffi

3
p ;0

� ¼
13:85 �5:1167 �4:4333 0 �1:9328 0

13:85 �4:4333 0 1:9328 0

13:167 0 0 0
40:667 0 3:8655

40:667 0

37:933

2
6666664

3
7777775
; ð32Þ

s�
45;arccos 1ffiffi

3
p ;45

� ¼

13:85 �5:1167 �4:4333 1:3667 1:3667 0

13:85 �4:4333 �1:3667 �1:3667 0

13:167 0 0 0

40:667 0 �2:7333
40:667 2:7333

37:933

2
6666664

3
7777775
; ð33Þ
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in units of 10�12 m2/N showing only the upper halves of the symmetric matrices. Three numbers in s½h;w;/�
indicate the three rotation angles h, w and / in degrees. Notice that each crack configuration considered

is not rotated even though rotations are used to produce different compliance matrices.

For two (Fig. 4 with 2a=d ¼ 0:9) and three (Fig. 5 with 2a=d ¼ 0:9) collinear cracks in an infinite body
subject to the single mode tension loading, three modes are decoupled and the stress intensity factors are

independent on the elastic constants of the solid (Denda, 2001). The values of KI under the uniaxial

tension is listed in Tables 3 (two collinear cracks) and 4 (three collinear cracks) for four compliance

matrices (30)–(33) and compared with the results by the RGCE (Denda, 2001) and the stress intensity

handbook (Murakami et al., 1987). Values of KII and KIII, not listed in the tables, are zero up to the

fourth decimal point (i.e., 0.0000). The accuracy of the handbook (Murakami et al., 1987) value for the

two collinear cracks is 0.5% and the discrepancy between the handbook and the CTSE values is less than

0.5%.
Stress intensity factors for two aligned parallel cracks (Fig. 6 with 2a=d ¼ 5:0), three aligned parallel

cracks (Fig. 7 with 2a=d ¼ 0:8), and two inclined cracks (Fig. 8 with a ¼ 30� and 2a=d ¼ 0:9) subject to
2a

σ

σ

2a

d

A B

Fig. 4. Two collinear cracks under remote uniaxial tension.

2a

σ

σ

2a

A B

2a

C

d d

Fig. 5. Three collinear cracks under remote uniaxial tension.

Table 3

Stress intensity factors for two collinear cracks (Fig. 4 with 2a=d ¼ 0:9) in an infinite body under tension r

s½0;0;0� s½30;0;0� s�
45;arccos 1=

ffiffi
3

p
;0

� s�
45;arccos 1=

ffiffi
3

p
;45

� Handbook

KIA=r
ffiffiffiffiffiffi
pa

p
1.118(1.117) 1.118(1.117) 1.118(1.117) 1.118(1.117) 1.117

KIB=r
ffiffiffiffiffiffi
pa

p
1.458(1.450) 1.458(1.450) 1.458(1.450) 1.458(1.450) 1.454

The values in the parentheses are taken from Denda (2001). Handbook values by Murakami et al. (1987).



Table 4

Stress intensity factors for three collinear cracks (Fig. 5 with 2a=d ¼ 0:9) in an infinite body under tension r

s½0;0;0� s½30;0;0� s½45;arccos 1=
ffiffi
3

p
;0� s½45;arccos 1=

ffiffi
3

p
;45� Handbook

KIA=r
ffiffiffiffiffiffi
pa

p
1.166(1.163) 1.165(1.163) 1.166(1.163) 1.166(1.163) 1.164

KIB=r
ffiffiffiffiffiffi
pa

p
1.570(1.559) 1.569(1.559) 1.570(1.559) 1.570(1.559) 1.565

KIC=r
ffiffiffiffiffiffi
pa

p
1.612(1.601) 1.612(1.601) 1.612(1.601) 1.612(1.601) 1.607

The values in the parentheses are taken from Denda (2001). Handbook values by Murakami et al. (1987).

d

2a

σ

σ

A Β

C D

Fig. 6. Two aligned parallel cracks under remote uniaxial tension.

d

d

2a

C

B

σ

σ

A

D

E F

Fig. 7. Three aligned parallel cracks under remote uniaxial tension.
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the uniaxial tension are given in Tables 5–7 in comparison with those by the RGCE (Denda, 2001). The
SIF results of these crack configurations depend on the elastic constants. Two parallel edge cracks in a

half-plane subject to the uniaxial tension is shown in Fig. 9. Numerical results for the stress intensity

factors along with those by the RGCE (Denda, 2001) are given in Table 8. A kinked crack in a half-plane



2a 2aB

A

α

d

σ

σ

C

D

Fig. 8. Two inclined cracks under remote uniaxial tension.

Table 5

Stress intensity factors for aligned two parallel cracks (Fig. 6 with 2a=d ¼ 5:0) in an infinite body under tension r

s½0;0;0� s½30;0;0� s�
45;arccos 1=

ffiffi
3

p
;0

� s�
45;arccos 1=

ffiffi
3

p
;45

�
KI=r

ffiffiffiffiffiffi
pa

p
A 0.721(0.722) 0.708(0.712) 0.721(0.723) 0.721(0.723)

B 0.721(0.722) 0.734(0.734) 0.721(0.723) 0.720(0.722)

C 0.721(0.722) 0.734(0.734) 0.721(0.723) 0.720(0.722)

D 0.721(0.722) 0.708(0.712) 0.721(0.723) 0.721(0.723)

KII=r
ffiffiffiffiffiffi
pa

p
A 0.170(0.171) 0.159(0.162) 0.164(0.164) 0.163(0.164)

B )0.170()0.171) )0.161()0.158) )0.164()0.164) )0.163()0.164)
C )0.170()0.171) )0.161()0.158) )0.164()0.164) )0.163()0.164)
D 0.170(0.171) 0.159(0.162) 0.164(0.164) 0.163(0.164)

KIII=r
ffiffiffiffiffiffi
pa

p
A 0.000(0.000) 0.000(0.000) 0.012(0.012) )0.008()0.008)
B 0.000(0.000) 0.000(0.000) 0.012(0.012) )0.010()0.010)
C 0.000(0.000) 0.000(0.000) )0.012()0.012) 0.010(0.010)

D 0.000(0.000) 0.000(0.000) )0.012()0.012) 0.008(0.008)

The values in the parentheses are taken from Denda (2001).
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under uniaxial tension is shown in Fig. 10. The non-crack boundary of the semi-infinite body is modeled

by 34 elements consisting of a gradually refined mesh as the crack mouth is approached. We have used

twelve crack elements (6 for each of the straight segments) along the kinked crack; the size of the singular

crack tip element is 1/8 of the near crack tip segment. The numerical results for the SIFs are given in

Table 9 along with the analytical solution for the isotropic solids given in the stress intensity handbook
(Murakami et al., 1987). The SIFs for double edge cracks in a square plate, as shown in Fig. 11, are

given for the isotropic solid and the cubic aluminum crystal s½0;0;0� in Table 10 along with the isotropic

solution by Bowie (1964). Exploiting the symmetry of the problem only one half of the plate was

analyzed. For the crack tip singular element, the size of the crack tip element is c ¼ a=32 with the

asymmetric arrangement of the crack elements shown in Fig. 3(b). The accuracy of the Bowie solution is

unknown. In summary, the typical discrepancy between the SIF results by the CTSE and the RGCE with

the conservation integral, for all the problems tested above, is 0.25%. This excellent agreement provides a

great confidence in the accuracy of the proposed CTSE, which is faster than the latter due to the absence
of the post-processing requirement.



a
b

d

B

A

σ σ

Fig. 9. Two parallel edge cracks in a half-plane under remote uniaxial tension.

Table 6

Stress intensity factors for aligned three parallel cracks (Fig. 7 with 2a=d ¼ 0:8) in an infinite body under tension r

s½0;0;0� s½30;0;0� s½45;arccos 1=
ffiffi
3

p
;0� s½45;arccos 1=

ffiffi
3

p
;45�

KI=r
ffiffiffiffiffiffi
pa

p
A 0.861(0.861) 0.831(0.832) 0.849(0.850) 0.850(0.850)

B 0.861(0.861) 0.856(0.856) 0.849(0.850) 0.848(0.849)

C 0.768(0.769) 0.742(0.743) 0.751(0.752) 0.751(0.752)

D 0.768(0.769) 0.742(0.743) 0.751(0.752) 0.751(0.752)

E 0.861(0.861) 0.856(0.856) 0.849(0.850) 0.848(0.849)

F 0.861(0.861) 0.831(0.832) 0.849(0.850) 0.850(0.850)

KII=r
ffiffiffiffiffiffi
pa

p
A 0.043(0.043) 0.042(0.046) 0.045(0.045) 0.044(0.044)

B )0.043()0.043) )0.049()0.045) )0.045()0.045) )0.045()0.045)
C 0.000(0.000) )0.0013(0.0025) 0.000(0.000) )0.00036()0.00036)
D 0.000(0.000) )0.0013(0.0025) 0.000(0.000) )0.00036()0.00036)
E )0.043()0.043) )0.049()0.045) )0.045()0.045) )0.045()0.045)
F 0.043(0.043) 0.042(0.046) 0.045(0.045) 0.044(0.044)

KIII=r
ffiffiffiffiffiffi
pa

p
A 0.000(0.000) 0.000(0.000) 0.0066(0.0066) 0.0015(0.0015)

B 0.000(0.000) 0.000(0.000) 0.0066(0.0066) )0.011()0.011)
C 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.0098(0.0097)

D 0.000(0.000) 0.000(0.000) 0.000(0.000) )0.0098()0.0097)
E 0.000(0.000) 0.000(0.000) )0.0066()0.0066) 0.011(0.011)

F 0.000(0.000) 0.000(0.000) )0.0066()0.0066) )0.0015()0.0015)

The values in the parentheses are taken from Denda (2001).

Table 7

Stress intensity factors for two inclined cracks (Fig. 8 with a ¼ 30� and 2a=d ¼ 0:9) in an infinite body under tension r

s½0;0;0� s½30;0;0� s½45;arccos 1=
ffiffi
3

p
;0� s½45;arccos 1=

ffiffi
3

p
;45�

KI=r
ffiffiffiffiffiffi
pa

p
A 0.788(0.788) 0.792(0.788) 0.788(0.788) 0.788(0.788)

B 0.911(0.909) 0.918(0.913) 0.914(0.911) 0.913(0.911)

C 0.912(0.909) 0.910(0.912) 0.914(0.911) 0.914(0.911)

D 0.788(0.788) 0.785(0.788) 0.788(0.788) 0.788(0.788)

KII=r
ffiffiffiffiffiffi
pa

p
A 0.474(0.474) 0.472(0.474) 0.475(0.475) 0.475(0.475)

B 0.455(0.454) 0.451(0.452) 0.455(0.454) 0.455(0.454)

C )0.455()0.454) )0.458()0.454) )0.455()0.454) )0.454()0.454)
D )0.474()0.474) )0.478()0.476) )0.475()0.475) )0.475()0.475)

KIII=r
ffiffiffiffiffiffi
pa

p
A 0.000(0.000) 0.000(0.000) )0.00036()0.00036) )0.00032()0.00032)
B 0.000(0.000) 0.000(0.000) )0.001()0.001) 0.002(0.002)

C 0.000(0.000) 0.000(0.000) )0.001()0.001) )0.00041()0.00039)
D 0.000(0.000) 0.000(0.000) )0.00036()0.00036) 0.001(0.001)

The values in the parentheses are taken from Denda (2001).
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Fig. 10. A kinked edge crack in a half-plane under remote uniaxial tension.

Table 8

Stress intensity factors for two parallel edge cracks (Fig. 9) in a half-plane in tension r

s½0;0;0� s½30;0;0� s½45;arccos 1=
ffiffi
3

p
;0� s½45;arccos 1=

ffiffi
3

p
;45�

KI=r
ffiffiffiffiffiffi
pa

p
A 0.870(0.870) 0.860(0.860) 0.859(0.859) 0.858(0.858)

B 0.870(0.870) 0.845(0.846) 0.859(0.859) 0.859(0.859)

KII=r
ffiffiffiffiffiffi
pa

p
A )0.138()0.138) )0.133()0.133) )0.133()0.133) )0.133()0.133)
B 0.138(0.138) 0.128(0.128) 0.133(0.133) 0.132(0.132)

KIII=r
ffiffiffiffiffiffi
pa

p
A 0.000(0.000) 0.000(0.000) 0.007(0.007) )0.012()0.012)
B 0.000(0.000) 0.000(0.000) )0.007()0.007) )0.002()0.002)

The values in the parentheses are taken from Denda (2001).

Table 9

Stress intensity factors for a kinked edge crack (Fig. 10 with h1 ¼ 90�, h2 ¼ 45� and c2 ¼ 1:0) in a half-plane under tension

c1 Isotropic Handbook s½0;0;0� s½30;0;0� s½45;arccos 1=
ffiffi
3

p
;0� s½45;arccos 1=

ffiffi
3

p
;45�

KI=r
ffiffiffiffiffiffi
pb

p

0.25 0.706(0.706) 0.703 0.717 0.701 0.707 0.707

0.50 0.706(0.706) 0.704 0.717 0.701 0.706 0.706

0.75 0.704(0.706) 0.705 0.716 0.698 0.705 0.705

0.90 0.705(0.706) 0.707 0.717 0.699 0.706 0.706

KII=r
ffiffiffiffiffiffi
pb

p

0.25 )0.366()0.365) )0.365 )0.363 )0.367 )0.367 )0.366
0.50 )0.367()0.365) )0.365 )0.363 )0.368 )0.367 )0.367
0.75 )0.367()0.366) )0.366 )0.363 )0.368 )0.368 )0.367
0.90 )0.360()0.359) )0.359 )0.355 )0.361 )0.360 )0.359

The values in the parentheses are taken from Denda and Dong (1999). Handbook values by Murakami et al. (1987).
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6. Concluding remarks

We have developed a singular crack tip element (SCTE) for the general anisotropic solids with the built

in
ffiffi
r

p
displacement and 1=

ffiffi
r

p
singular stress behaviors at its tip, which is placed at each tip of each crack.

The number and the shape of the crack that can be model by the technique are unlimited. Over the crack tip

element of small length 2a we interpolate the crack opening displacement by
dkðX1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X 2

1

q
dð1Þ
k



Table 10

Stress intensity factors for double edge cracks in a square plate (H=W ¼ 1) under tension (Fig. 11), where

gða=W ;H=W Þ ¼ KI=fr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2W tanðpa=2W Þ

p
g

a=W gða=W ;H=W Þ
Isotropic Bowie (1964) s½0;0;0�

0.1 1.13(1.13) 1.13 1.14

0.2 1.16(1.16) 1.13 1.17

0.4 1.19(1.19) 1.16 1.20

0.8 1.05(1.05) 1.01 1.05

The values in the parentheses are taken from Denda and Dong (1999).

 3'-0" 2W

a a

σ

σ

2H

Fig. 11. Double edge cracks in a square plate (W ¼ H ) in tension.
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along the local crack axis X1ð¼ x1=aÞ. The resulting displacement contribution is given by
uðdÞj ðx1; x2Þ ¼ �I
X3

a¼1

Aja
X3

k¼1

Lkad
ð1Þ
k R1ðZaÞ
and the stress intensity factors by
Kjðþ1Þ ¼
ffiffiffi
p
a

r
I
X3

a¼1

Lja
X3

k¼1

Lkad
ð1Þ
k ;
where
R1ðZaÞ ¼ Za �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZaÞ2 � 1

q
;

and Za ¼ za=a. The stress intensity factors, along with the unknown boundary displacements and tractions,
are determined in the main processing; no post processing is required. The accuracy of the stress intensity
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factors is comparable to that obtained by the well established RGCE that requires the evaluation of

conservation integral in the post processing.
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