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Abstract

We consider multiple curvilinear cracks in the two-dimensional general anisotropic solids and establish a compu-
tationally effective technique to determine the stress intensity factors accurately. Each curvilinear crack is represented
by a collection of straight crack elements and the crack opening displacement (COD) by the continuous distribution of
the dislocation dipoles. The crack element located next to the crack tip is called the crack tip singular element (CTSE),
where the known +/r crack tip opening displacement and the 1//r stress singularity is mathematically built in the
interpolation of the COD using the Chebyshev polynomials. The regular crack elements away from the crack tip use the
quadratic polynomial interpolation for the CODs.

Simple analytical formulas for the displacement, traction, and the stress intensity factor (SIF) contributions for the
CTSE are developed in terms of its own COD coefficients. Since the SIFs are obtained during the main processing no
post processing is required; a distinct advantage over the powerful quarter-point element. Numerical results are given
for several multiple curvilinear crack problems to demonstrate the accuracy and simplicity of the technique.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

We will develop the boundary element method for the mixed mode fracture analysis of multiple
curvilinear cracks in the general anisotropic solids in two dimensions. Under the assumption of the
generalized plane strain three modes, in-plane Mode I, 11, and out-of-plane Mode III, of fracture could
be coupled. Such a coupling is found in the fracture analysis of the triclinic, monoclinic and trigonal
crystal systems. The other crystals which have a plane of symmetry normal to the x3-axis (i.e., the out-of-
plane axis) also exhibit this coupling when their crystal axes are rotated out of the symmetry position.
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The majority of the existing BEM for the two-dimensional fracture analysis for the anisotropic solids
have dealt with the decoupled cases of the plane strain and stress (Snyder and Cruse, 1975; Sollero and
Aliabadi, 1993; Denda, 1999). The coverage of the generalized plane strain in the fracture analysis is
limited (Ang and Clements, 1986; Berger and Tewary, 1997; Tan et al., 1992; Denda, 2001; Denda and
Mattingly, 2003). With the exception of Denda (2001) and Denda and Mattingly (2003), who have
addressed the full coupling of the three modes, all others dealt with simpler decoupled cases in the
generalized plane strain.

In modeling of the crack tip singularity in anisotropic solids Snyder and Cruse (1975) used the
Green’s function for the single crack which calculated the stress intensity factors analytically without
modeling the crack surface. Tan and Gao (1992) used the quarter-point traction and displacement crack
tip elements from which the analytical expressions for the stress intensity factors were derived. The dual
boundary element method of Sollero and Aliabadi (1993) used the J-integral and the dislocation dipole
approach of Denda (1999, 2001) adopted the conservation integral developed by Chen and Shield (1977)
to calculate SIFs, respectively. Despite an excellent accuracy of the SIF results by the conservation
integrals, the post-processing requirement is an extra burden for the multiple cracks problems. The
Green’s function approach does not require the post-processing since it uses the analytic expression for
the SIF; however, the method is limited to single straight crack problems. In extending the dislocation
dipole approach of Denda (1999, 2001), Denda and Mattingly (2003) interpolated the crack opening
displacement (COD) of a single straight crack with the product of the va? — X? weight function and
Chebyshev polynomials and obtained the analytical SIF formula in terms of the COD coefficients of the
polynomials, where X is the local crack coordinate along the crack of half length a. This crack element
is called the whole crack singular element (WCSE). Since the analytical formula gives the SIFs as an
integral part of the solution the post-processing is not required. The corresponding WCSE for the
isotropic solids was developed by Denda and Dong (1997). Although the WCSE can handle multiple
straight center cracks effectively, it has no capability for the edge and curvilinear cracks. For isotropic
solids, Denda and Dong (1999) proposed the crack tip singular element (CTSE), which is a small WCSE
element embedded at each crack tip, to extend the capability of the WCSE to multiple curvilinear
cracks.

The objective of this paper is to develop the crack tip singular element for the general anisotropic solids
in 2-D. The CTSE is placed locally at each crack tip on top of the ordinary non-singular crack elements that
cover the entire crack surface. Any curvilinear cracks, including center and edge cracks, can be modelled
rectilinearly. Since the quarter-point element does not provide an analytical formula for the stress intensity
factor, an indirect procedure, such as the J-integral, must be used to calculate the stress intensity factor. The
CTSE overcomes this disadvantage of the quarter-point element by providing the SIF as an integral part of
the main solution. It is an ideal fracture analysis tool for 2-D multiple curvilinear cracks in the general
anisotropic solids.

2. Stroh formalism for 2-D general anisotropic solids

We consider the generalized plane strain problem where the displacement components u; (i = 1,2,3)
depend only on two coordinates x; and x,. Replace the pair of suffices by the single suffix according to
(11->1), (22->2), (33—>3), (23 —4), (31 > 5), (12— 6) for the stress, strain and compliance components.
The non-zero stain components are given by

Ou; Ouy Ous Ous Ou, Qu
e = — € = €y = — €5 = €6 = A
6x1 ’ a)Q ’ 6x2 ’ 6x1 ’

(1)

6_x1 Ox 2
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and the strain—stress relations by
6
eM:ZSMNO'N (M,]V:172.74'7576>7 (2)
N=1

where Sy 1s the reduced compliance defined by

Sunv = Suy — (SM3S3N)/S33 (M»N =1,2,4,5,6) (3)
in terms of the 3-D compliance constants s,y (M, N = 1,2,3,4,5,6). In this paper, the summation over an
index is indicated explicitly without using the summation convention for the repeated indices.

The displacement u; and the stress function ¢, are given in the form (Lekhnitskii, 1963; Eshelby et al.,
1953)

3 3
u; =2N ZAiufa(Zoc)v ¢, =2R ZLia&fa(za) (4)
a=1

a=1

in terms of three analytic functions fi(z;), fa(z2) and f3(z;) of the generalized complex variables
z, = x| + p.x; for o = 1,2, 3. Here p,, along with their conjugates, are the three distinct roots of the sixth-
order polynomial characteristic equation

d¥(p)d? (p) — d¥(p)d® (p) = 0, (5)
where

d“ (p) = p*Sii — 2p*Si6 + P> (2812 + Ses) — 2PSas + Sa,
d®(p) = p*Sis — P*(Sia + Sse) + p(Sas + Sis) — Soa,

d?(p) = p*Sss — 2pSus + Sus.
The coefficients L;, in (4) are given, as the the components of 3 x 3 matrix L, by
=pilyy —palay —psrils;

L=[L,)=| Lx Ly rily; |, (6)
rilyy roLo) L33

where

d® (p1 ) d® (pz) a® (pz)

Ta0(p) T a0 P T a0 ()

Letl, = {Lw,Lh,LM}T represent ath column of the matrix L. The coefficients 4;, in (4) are given as the
components of the 3x3 matrix A defined by

: ()

r

A= [ah a, 33], (8)
where
Al S16 — S11Pxy  S12,  S14 — S15Pa Ly,
8§26 — 21 P4 8§22 8§24 — 825D
a, =4 Ay p = | ————2, =, T =27 L, (x=1,2,3). 9)
y Dx D Do I
3 S56 — S51Pxs  S525,  S54 — 855Dy 3

Note that for each characteristic root p, we determine vectors 1, = {LM,LZMLM}T and a, = {Am,AZ“,AM}T
up to an arbitrary multiplying factor, which can be normalized by (Denda, 2001) the relation
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3
2> Lpdn=1 (2=1,2,3). (10)
i=1

The stress components ¢;; are given by

09 _ 09
T T (1)

g1 =

3. Direct formulation of the BEM

Consider a finite domain R bounded by the contour 0R where the displacement u; and the traction ¢; are
applied. We adopt the physical interpretation of Somigliana’s identity (Denda, 2001; Altiero and Gavazza,
1980; Eshelby, 1969) to formulate the direct BEM in terms of the distributions of line forces ¢; and dis-
location dipoles u;, respectively, over OR embedded in the infinite domain. The two fundamental solutions,
the line force and the dislocation dipole, are obtained using the Stroh formalism outlined in the previous
section. A line force in x; direction at (1, #,) gives rise to the displacement component in the x; direction at
(x1,%2)

1 3
Gplor i1 1a) = 37 D A0z = &), (12)

where z, = x; + p,x; and &, = n; + p,n, (. = 1,2,3) and 3T is the imaginary part of a complex variable. The
dislocation dipole is an infinitesimal segment (d#,,dn,) of length ds over which a displacement jump is
prescribed. For a dislocation dipole at (,,#,) in x; direction, the resulting displacement component in x;
direction at (x;,x,) is given by

3 3
d¢

A'aLac 2 ) 13

2 Anle T (13)

o

GEZ)(X17X2; Ny, mp)ds = =3

31—

where d&, = di, + p,dn,. The detailed derivation of these solutions are given by Denda (2001).

The original boundary is discretized and approximated by a set of straight lines. The boundary dis-
placement and traction are interpolated by the quadratic function. Since all the boundary integrals are
evaluated analytically the resulting boundary equations are algebraic rather than integral equations. There
is no need to deal with the singular and the hypersingular integrals. The explicit formulas for the dis-
placement, displacement gradient, stress and the traction for generalized plane strain can be found in
Denda (1999, 2001). Otherwise we follow the standard procedure of the direct BEM implementation as
discussed by Denda (2001).

4. Crack modeling
4.1. Regular crack element

A crack C with the crack opening displacement J; of a traction-free crack in an infinite body is repre-
sented by the continuous distribution of the dislocation dipoles with the magnitude §; (Denda, 2001). The
displacement due to the crack is given by multiplying J; to the fundamental dislocation dipole solution (13)
and integrating over C to get
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1 3 3 d¢
(d) ~ o
. =-3- Ay Y Ly ———, 14
) =30 [ A0S badi (14
where &, = 1, + p.1,- Similarly, we can get the stress function
'Y (x x):fsl/ iL- i:L 5o 4% (15)
J 1,42 \TC c = j%k:l ko kZC{_ia'
We approximate the curvilinear crack C by a collection of straight crack elements C;
N
C=>C. (16)
=1

If we interpolate the crack opening displacement for each crack element C; by the quadratic polynomial we
can evaluate the integrals (14) and (15) for each element analytically (Denda, 1999, 2001). Since no crack tip
singularity is built in, this crack element is called the regular crack element (RGCE). The use of the RGCEs
requires the fine near crack tip mesh along the crack to simulate the high crack opening displacement
gradient there. To determine the crack opening displacement J;, we use the traction formula and set the
traction zero on one of the crack surfaces. This system of traction boundary equations will be coupled with
another system of boundary equations if the the finite non-crack boundary is present and yet another
system of traction boundary equations in the presence of multiple cracks. Since the crack tip singularity is
not built into the interpolation, the post processing, such as the use of conservation integrals, is required to
determine the stress intensity factors as demonstrated by Denda (1999, 2001). In the following sections we
present alternative techniques for crack modeling using the whole crack singular elements and the crack tip
singular element, each of which models the crack tip singularity analytically and provides the analytical
formula for the stress intensity factors.

4.2. Whole crack singular element

Let C be a straight crack in an infinite body subject to the traction " and ¢~ (= —¢") on its faces. It is
located in the interval (—1, +1) of the horizontal coordinate axis, where &, = n, for all values of « (= 1,2, 3)
because 1, = 0. Egs. (14) and (15) can be written as

+1 3 3 d
d
u; (x1,%) =3— » ZA.W ZLkocék(Vll) z,
) k=1 (17)
I 3 n
(Z)/ (xl,xz) = \5; [1 ;Lj:x ;Lkaék(nl) >

To embed the /r crack opening displacement behavior at each crack tip we introduce the interpolation

M
Se(m) = /1= 0" Unoi(m), (18)
m=1

where U,,_;(n,) is Chebyshev polynomial of the second kind and M is the number of polynomials. Sub-
stitute (18) into (17) and evaluate the integrals analytically to get
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M3 3 (19)
V(e x2) = =3 D LY Liud" Ru(za),
m=1 o=1 k=1
where
Ru(z,) = <za — /() — 1) (m=1). (20)

For the crack with half-crack length a, the interpolation and the results are still given by (18)—(20) if we
replace #; with E; =#,/a and z, with Z, = z,/a, respectively. The corresponding stress components are
obtained by substituting (19), with the argument Z,, into (11) with the result

1 M 3 3 ,
0'2j (xlaXZ) = _ZS ZL/oz ZLIW(S]E )mefl(Zot)v
m=1 o=1 k=1 (21)
1 M 3 3 m)
O-lj) (xlvx2) = ;SZ ZPALJOL Lkuék mefl(Zaz)a
m=1 o=1 k=1
where
(za —\/(Z) — 1>
G(”l*)(z@) — (m=1). (22)

1 3 3 "
(tj)i(Xl)::I:ES S LY Lud"mU, (X)) (IX|<1), (23)

where X; = x;/a and the superscripts + and — indicate limits from above and below the horizontal coor-
dinate axis, respectively. From the limiting value of the stress on the crack line in front of each crack tip at
X, = 1 we get the stress intensity factors

M 3 3
T m m
K;(£1) = \/;SE ()" m> Ly Liudy”, (24)
m=1 a=1 k=1

where K, = K; (Mode 1), K| = Kj; (Mode II) and K3 = Kj;; (Mode III). Note that (23) is the formula used to
determine the crack opening displacement by setting the left-hand side to the known traction value. Once
the COD is determined formula (24) can be used to calculate the SIFs.

When multiple straight center cracks are present in the infinite body we introduce the local coordinate
system for each crack such that the crack is centered at the origin and aligned with the horizontal axis. The
formulas (17)—(24) still apply if we calculate the compliance tensor, characteristic roots, and matrices L and
A in the local rotated coordinate system. The local components obtained by these formulas must be
transformed to the global component before they are added to the contributions from other cracks. When
the finite boundary is present the coupling of the boundary equations and the crack surface traction
equations present the overall system of equations to be solved for the unknown boundary displacement/
traction and the crack opening displacement. The results of crack analysis for multiple straight cracks have
been reported by Denda and Mattingly (2003).
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Fig. 1. Crack tip singular element (CTSE) 44, superposed on the regular crack elements (R GCE:s).
4.3. Crack tip singular element

We extend the use of the WCSE, which is limited so far to straight center cracks, to curvilinear and/or
edge cracks. Discretize the original curvilinear crack into a collection of multiple straight crack elements as
shown in Fig. 1; the crack opening displacement in each element is interpolated by the quadratic poly-
nomial. This is the regular crack element scheme introduced earlier, which is a complete scheme by itself but
lacks the ability to model the crack tip singularity analytically. So we modify the crack tip element A4, (Fig.
1) by superposing the whole crack singular element AAgS) on top of the existing regular crack tip element
AAY) to embed the correct singular behavior at the crack tip 4. The size of the WCSE AAgS) is selected small
enough (compared to the crack length) so that only one term of the interpolation (18) is sufficient. The
WCSE used at the crack tip with only one term of interpolation is called the crack tip singular element
(CTSE). A center crack has two CTSEs, while an edge crack has one. A set of simple formulas for the
CTSE, obtained by setting M = 1 in the results of the WCSE, is summarized below. Introduce the local
coordinate system (x,x,) with the origin at the center of the CTSE. The generalized complex variables are
defined by z, = x; + p,x,, where p, (o« = 1,2, 3) are the characteristic roots in the local coordinate system.
The CTSE is located in the interval (—a, +a) along the x,-axis whose positive direction points toward the
crack tip as shown in Fig. 1. The crack opening displacement is interpolated by

Se(Xy) = /1 — X265, (25)

where X; = x;/a. The displacement and the stress function contribution are given by

u(d> (x1,%) = —JZAJXZLM P Rl

(26)
(].’)()XI,XZ 7*\52141112111(0' oc )
where
Rl(Zoc) =2, — (Zx)z -1, (27)
and Z, = z,/a. The limiting value of the traction on the crack line is given by
l@ - : 1
()" () = £-3> Ly Lud!  (X]<T) (28)

o=1 k=1



1480 M. Denda, M.E. Marante | International Journal of Solids and Structures 41 (2004) 14731489

and the stress intensity factors by

3 3
T
Ki(+1) = \/;3 N1y > Lidl, (29)

where K, = K; (Mode I), K; = Kj; (Mode II) and K3 = Ky;; (Mode III).

Note that the CTSE provides the 1/4/r stress singularity at its two ends 4 and 4; in Fig. 1. While the
singularity at A reflect the true crack tip singular behavior, the singularity at 4, is spurious, i.e., within the
element the stress varies like 1/,/p near 4,, where f is the distance from A4;. Note also the stress contri-
bution from the superimposed regular element AA(Ir varies like 1/p near 4;, which is stronger singularity
than the spurious 1/,/p singularity. Thus if we select the collocation point of the regular crack element AA(lr)
off a small distance p away from 4, the effect of the spurious 1/,/p singularity at 4; is overwhelmed by that
of stronger 1/p singularity. Since such a selection of the collocation point is the standard procedure of the
discontinuous element, we can justify the use of the CTSE. The suggested offset distance for the discon-
tinuous element is between 1/40 and 1/20 of the element size. Extension of the above results to multiple
curvilinear cracks in the presence of the finite boundary requires the consideration of the coupling among
cracks and the boundary, which is performed in a straightforward fashion.

5. Numerical results

The crack opening displacement is modelled by the regular crack elements (RGCEs) over the entire
crack segment first. Additional accuracy is provided by further introducing the crack tip singular element
(CTSE) for each crack tip element. The accuracy of the numerical results depends both on the CTSE and
the selection of the regular crack elements. Denda (1999, 2001) used the regular crack elements to model
curvilinear cracks in the main processing and determined the SIFs using the conservation integral of Chen
and Shield (1977) in the post processing. The remarkable accuracy of the SIF results by Denda (1999, 2001)
is a testimony of the reliability of the regular crack element; even without using the CTSE the numerical
results are quite accurate. However, the post processing evaluation of the conservation integrals is required
to get the stress intensity factors. The CTSE eliminates this post processing requirement. In the following
the results by the CTSE will be compared primarily with those by the RGCE with the conservation integral
to demonstrate the accuracy of the CTSE.

Several crack element meshes for a center (in an infinite body) and an edge crack (in a semi-infinite body)
under uniaxial tension are studied for isotropic solids. The degenerate (or coincident) characteristic roots of
the isotropic material are made distinct by slightly perturbing the compliance coefficients. Fig. 2 shows
typical crack element meshes for a center crack of length 2a, where ¢ is the crack tip element size. Fig. 3

2a

c=a

c=1/2a

c=1/4 a

c=1/8 a

c=1/16 a

Fig. 2. Symmetric crack elements for a center crack.
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shows two sets of symmetrical and asymmetrical crack elements for an edge crack of length a. The
asymmetrical element recognizes the absence of singularity at the crack mouth and adopts the arrangement
used for one half of the center crack. The results are summarized in Tables 1 and 2 and compared with
those obtained by the isotropic CTSE of Denda and Dong (1997). The agreement is near perfect between
the two sets of results giving the confidence on the new CTSE for anisotropic solids. The recommendation
based on this study is to use the symmetric mesh with ¢ = 1/16a (Fig. 2) for the center crack and the
asymmetric mesh with ¢ = 1/16a (Fig. 3(b)) for the edge crack. If we define the near crack tip segment to be
one half of a straight center crack or the whole of a straight edge crack, then the recommendation is to
select ¢ to be 1/16 of the near crack tip segment length. Unless mentioned otherwise, we will use these
meshes below.

In the following examples, we select aluminum crystal (cubic) as the model anisotropic solid. Originally
the crystal axes a;, a; and a3 of the cubic lattice are aligned along the coordinate axes x;, x, and x3. Then we
rotate the axes three times: 6,  and ¢. First rotate the coordinate system through an angle 6 about the x;-
axis, then an angle iy about the rotated x,-axis, and finally an angle ¢ about the rotated x;-axis. Four
compliance matrices produced this way are given by

S11 S22 S13 Si4 S15 Si6 159 -58 -58 0 0 0
S22 823 S24  S25  S26 15.9 —-5.8 0 0 0
_ §33  S3¢4 S35 S36 _ 15.9 0 0 0
Sp00 = S44  S45  S46 - 35.2 0 0 ’ (30)
S55 856 352 0
S66 35.2
a
c=1/2 a
c=1/4 a
c=1/8a
c=1/16 a
c=1/32 a
@
a
c=1/4 a
c=1/8 a
c=1/16 a
c=1/32 a
(b)

Fig. 3. (a) Symmetric and (b) asymmetric crack elements for an edge crack.
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The effect of crack tip singular element size on the stress intensity factor Kj/K™ of a center crack (Fig. 2) in an infinite isotropic plate
under uniaxial tension, where K™ is the analytical solution

(o T > T o N o T e T S T

a/2
al4
a/8
a/l6
a/32
a/64

1.010(1.010)
1.006(1.006)
1.003(1.003)
1.001(1.001)
1.000(1.000)
0.999(0.999)
0.999(0.999)

The values in the parentheses are obtained by the isotropic CTSE (Denda and Dong, 1999).

Table 2
The effect of crack tip singular element size on the stress intensity factor K;/K* of an edge crack (Fig. 3) in a semi-infinite isotropic

plate under uniaxial tension ¢, where K{‘"“l = 1.120+/7a is the analytical solution

Symmetrical mesh

Asymmetrical mesh

KI/Klanal

KI /Klanal

a0 a0 a0
Il

a/2
a/4
a/8
a/l6
a/32
a/64
a/128
a/256

1.011(1.010)
1.006(1.006)
1.004(1.004)
1.002(1.002)
1.001(1.001)
1.000(1.000)
1.000(1.000)
0.999(0.999)

1.011(1.010)
1.006(1.007)
1.004(1.004)
1.003(1.003)
1.002(1.002)
1.002(1.002)
1.001(1.001)
1.001(1.001)

The values in the parentheses are obtained by the isotropic CTSE (Denda and Dong, 1999).

$[30,0,00 =

s [45,arccosﬁ40]

s [45,arccosi 45} =

7

14362 42625 58 0 0 _1.7754
14362 -58 0 0 17754
159 0 0 0
352 0 0o | (31)
352 0
41.35
13.85 —5.1167 —44333 0 —19328 0
13.85 —44333 0 19328 0
13.167 0 0 0
40667 0 3.8655 ] (32)
40667 0
37.933
13.85 —5.1167 —44333 13667 13667 0
13.85 —44333 —13667 —13667 0
13.167 0 0 0
40.667 0 -2 (33)
40667 27333

37.933
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in units of 107> m?*/N showing only the upper halves of the symmetric matrices. Three numbers in s,y 4
indicate the three rotation angles 6, v and ¢ in degrees. Notice that each crack configuration considered
is not rotated even though rotations are used to produce different compliance matrices.

For two (Fig. 4 with 2a/d = 0.9) and three (Fig. 5 with 2a/d = 0.9) collinear cracks in an infinite body
subject to the single mode tension loading, three modes are decoupled and the stress intensity factors are
independent on the elastic constants of the solid (Denda, 2001). The values of K; under the uniaxial
tension is listed in Tables 3 (two collinear cracks) and 4 (three collinear cracks) for four compliance
matrices (30)—(33) and compared with the results by the RGCE (Denda, 2001) and the stress intensity
handbook (Murakami et al., 1987). Values of Kj; and Kjj, not listed in the tables, are zero up to the
fourth decimal point (i.e., 0.0000). The accuracy of the handbook (Murakami et al., 1987) value for the
two collinear cracks is 0.5% and the discrepancy between the handbook and the CTSE values is less than
0.5%.

Stress intensity factors for two aligned parallel cracks (Fig. 6 with 2a/d = 5.0), three aligned parallel
cracks (Fig. 7 with 2a/d = 0.8), and two inclined cracks (Fig. 8 with « = 30° and 2a/d = 0.9) subject to

bo

Fig. 4. Two collinear cracks under remote uniaxial tension.

Tcs
LT L
e e e
te

Fig. 5. Three collinear cracks under remote uniaxial tension.

Table 3
Stress intensity factors for two collinear cracks (Fig. 4 with 2a/d = 0.9) in an infinite body under tension ¢
S(0.00 §130.0.0) s [45.arccos ]/\/50} s [4531‘0005 1/\/§.45} Handbook
Kia/o\/ma 1.118(1.117) 1.118(1.117) 1.118(1.117) 1.118(1.117) 1.117
Kig/o+/ma 1.458(1.450) 1.458(1.450) 1.458(1.450) 1.458(1.450) 1.454

The values in the parentheses are taken from Denda (2001). Handbook values by Murakami et al. (1987).
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Table 4
Stress intensity factors for three collinear cracks (Fig. 5 with 2a/d = 0.9) in an infinite body under tension o
S[0.0,0] S[30,0,0] S[Ai,arccu> 1/V3,0] S[45Aarccos 1/3,45] Handbook
Kia/o\/ma 1.166(1.163) 1.165(1.163) 1.166(1.163) 1.166(1.163) 1.164
Kis/ov/ma 1.570(1.559) 1.569(1.559) 1.570(1.559) 1.570(1.559) 1.565
Kic/o\/ma 1.612(1.601) 1.612(1.601) 1.612(1.601) 1.612(1.601) 1.607

The values in the parentheses are taken from Denda (2001). Handbook values by Murakami et al. (1987).
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Fig. 6. Two aligned parallel cracks under remote uniaxial tension.

A B
= —x
d
< i ]
A
d
E F v

Fig. 7. Three aligned parallel cracks under remote uniaxial tension.

the uniaxial tension are given in Tables 5-7 in comparison with those by the RGCE (Denda, 2001). The
SIF results of these crack configurations depend on the elastic constants. Two parallel edge cracks in a
half-plane subject to the uniaxial tension is shown in Fig. 9. Numerical results for the stress intensity
factors along with those by the RGCE (Denda, 2001) are given in Table 8. A kinked crack in a half-plane
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Fig. 8. Two inclined cracks under remote uniaxial tension.
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Table 5
Stress intensity factors for aligned two parallel cracks (Fig. 6 with 2a/d = 5.0) in an infinite body under tension o

Sp.0.0) S(30.0.0) s [45.arccos l/\/i.()} s [45.arccos l/\/§,45}

Ki/ov/ma A 0.721(0.722) 0.708(0.712) 0.721(0.723) 0.721(0.723)

B 0.721(0.722) 0.734(0.734) 0.721(0.723) 0.720(0.722)

C 0.721(0.722) 0.734(0.734) 0.721(0.723) 0.720(0.722)

D 0.721(0.722) 0.708(0.712) 0.721(0.723) 0.721(0.723)

Ku/o\/ma A 0.170(0.171) 0.159(0.162) 0.164(0.164) 0.163(0.164)
B —-0.170(=0.171) —-0.161(-0.158) —0.164(-0.164) —0.163(-0.164)
C —-0.170(=0.171) —-0.161(-0.158) —0.164(-0.164) —0.163(-0.164)

D 0.170(0.171) 0.159(0.162) 0.164(0.164) 0.163(0.164)
Kui/oy/ma A 0.000(0.000) 0.000(0.000) 0.012(0.012) —0.008(=0.008)
B 0.000(0.000) 0.000(0.000) 0.012(0.012) —-0.010(-0.010)

C 0.000(0.000) 0.000(0.000) ~0.012(=0.012) 0.010(0.010)

D 0.000(0.000) 0.000(0.000) ~0.012(~0.012) 0.008(0.008)

The values in the parentheses are taken from Denda (2001).

under uniaxial tension is shown in Fig. 10. The non-crack boundary of the semi-infinite body is modeled
by 34 clements consisting of a gradually refined mesh as the crack mouth is approached. We have used
twelve crack elements (6 for each of the straight segments) along the kinked crack; the size of the singular
crack tip element is 1/8 of the near crack tip segment. The numerical results for the SIFs are given in
Table 9 along with the analytical solution for the isotropic solids given in the stress intensity handbook
(Murakami et al., 1987). The SIFs for double edge cracks in a square plate, as shown in Fig. 11, are
given for the isotropic solid and the cubic aluminum crystal sy in Table 10 along with the isotropic
solution by Bowie (1964). Exploiting the symmetry of the problem only one half of the plate was
analyzed. For the crack tip singular element, the size of the crack tip element is ¢ = a/32 with the
asymmetric arrangement of the crack elements shown in Fig. 3(b). The accuracy of the Bowie solution is
unknown. In summary, the typical discrepancy between the SIF results by the CTSE and the RGCE with
the conservation integral, for all the problems tested above, is 0.25%. This excellent agreement provides a
great confidence in the accuracy of the proposed CTSE, which is faster than the latter due to the absence
of the post-processing requirement.
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Table 6

Stress intensity factors for aligned three parallel cracks (Fig. 7 with 2a/d = 0.8) in an infinite body under tension ¢

S[0.0,0] S[30,0,0] S[45.arccos 1/V3,0] S[45.arccos 1/V/3.45]

Ki/oy/ma A 0.861(0.861) 0.831(0.832) 0.849(0.850) 0.850(0.850)

B 0.861(0.861) 0.856(0.856) 0.849(0.850) 0.848(0.849)

C 0.768(0.769) 0.742(0.743) 0.751(0.752) 0.751(0.752)

D 0.768(0.769) 0.742(0.743) 0.751(0.752) 0.751(0.752)

E 0.861(0.861) 0.856(0.856) 0.849(0.850) 0.848(0.849)

F 0.861(0.861) 0.831(0.832) 0.849(0.850) 0.850(0.850)
Ku/ov/ma A 0.043(0.043) 0.042(0.046) 0.045(0.045) 0.044(0.044)

B —0.043(-0.043) —0.049(-0.045) —0.045(-0.045) —0.045(-0.045)

C 0.000(0.000) —0.0013(0.0025) 0.000(0.000) ~0.00036(=0.00036)

D 0.000(0.000) —0.0013(0.0025) 0.000(0.000) —0.00036(—0.00036)

E —0.043(=0.043) —0.049(~0.045) ~0.045(=0.045) ~0.045(=0.045)

F 0.043(0.043) 0.042(0.046) 0.045(0.045) 0.044(0.044)
Kui/ov/ma A 0.000(0.000) 0.000(0.000) 0.0066(0.0066) 0.0015(0.0015)

B 0.000(0.000) 0.000(0.000) 0.0066(0.0066) ~0.011(=0.011)

C 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.0098(0.0097)

D 0.000(0.000) 0.000(0.000) 0.000(0.000) —0.0098(-0.0097)

E 0.000(0.000) 0.000(0.000) ~0.0066(~0.0066) 0.011(0.011)

F 0.000(0.000) 0.000(0.000) -0.0066(~0.0066) ~0.0015(=0.0015)

The values in the parentheses are taken from Denda (2001).

Table 7
Stress intensity factors for two inclined cracks (Fig. 8 with o = 30° and 2a/d = 0.9) in an infinite body under tension o
S[0,0,0] S[30,0,0] S[45.arccos 1/V3,0] S[45.arccos 1/V/3.45)
Ki/o\/ma A 0.788(0.788) 0.792(0.788) 0.788(0.788) 0.788(0.788)
B 0.911(0.909) 0.918(0.913) 0.914(0.911) 0.913(0.911)
C 0.912(0.909) 0.910(0.912) 0.914(0.911) 0.914(0.911)
D 0.788(0.788) 0.785(0.788) 0.788(0.788) 0.788(0.788)
Kn/o\/na A 0.474(0.474) 0.472(0.474) 0.475(0.475) 0.475(0.475)
B 0.455(0.454) 0.451(0.452) 0.455(0.454) 0.455(0.454)
C —0.455(-0.454) —0.458(-0.454) —0.455(-0.454) —0.454(-0.454)
D —0.474(-0.474) —0.478(-0.476) —0.475(-0.475) —0.475(-0.475)
Kui/o\/ma A 0.000(0.000) 0.000(0.000) —0.00036(—-0.00036) —0.00032(-0.00032)
B 0.000(0.000) 0.000(0.000) —0.001(-0.001) 0.002(0.002)
C 0.000(0.000) 0.000(0.000) —0.001(-0.001) —0.00041(-0.00039)
D 0.000(0.000) 0.000(0.000) ~0.00036(=0.00036) 0.001(0.001)

The values in the parentheses are taken from Denda (2001).
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Fig. 9. Two parallel edge cracks in a half-plane under remote uniaxial tension.
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Table 8
Stress intensity factors for two parallel edge cracks (Fig. 9) in a half-plane in tension o
S[0.0,0 S[30,0,0] S[45‘arccos 1/V3,0] S45 arccos 1/V/345)
Ki/o\/na A 0.870(0.870) 0.860(0.860) 0.859(0.859) 0.858(0.858)
B 0.870(0.870) 0.845(0.846) 0.859(0.859) 0.859(0.859)
Ky/o\/ra A —0.138(-0.138) —0.133(-0.133) —0.133(-0.133) —0.133(-0.133)
B 0.138(0.138) 0.128(0.128) 0.133(0.133) 0.132(0.132)
Ky/oy/ma A 0.000(0.000) 0.000(0.000) 0.007(0.007) —-0.012(-0.012)
B 0.000(0.000) 0.000(0.000) —-0.007(=0.007) —-0.002(-0.002)
The values in the parentheses are taken from Denda (2001).
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Fig. 10. A kinked edge crack in a half-plane under remote uniaxial tension.
Table 9
Stress intensity factors for a kinked edge crack (Fig. 10 with 6; = 90°, 6, = 45° and ¢, = 1.0) in a half-plane under tension
C1 ISOtrOpiC Handbook S[0,0,0) S[30,0,0] s[45.arccos 1/v3,0] S[45.un:cos 1/V/345]
K]/O’\/E
0.25 0.706(0.706) 0.703 0.717 0.701 0.707 0.707
0.50 0.706(0.706) 0.704 0.717 0.701 0.706 0.706
0.75 0.704(0.706) 0.705 0.716 0.698 0.705 0.705
0.90 0.705(0.706) 0.707 0.717 0.699 0.706 0.706
KH/G\/EE
0.25 —0.366(—0.365) —-0.365 —-0.363 —-0.367 —-0.367 —-0.366
0.50 —0.367(-0.365) —-0.365 —-0.363 —-0.368 -0.367 -0.367
0.75 —0.367(-0.366) —-0.366 —-0.363 —-0.368 —-0.368 —-0.367
0.90 —0.360(-0.359) -0.359 —-0.355 —-0.361 —-0.360 -0.359

The values in the parentheses are taken from Denda and Dong (1999). Handbook values by Murakami et al. (1987).

6. Concluding remarks

We have developed a singular crack tip element (SCTE) for the general anisotropic solids with the built
in /r displacement and 1/+/r singular stress behaviors at its tip, which is placed at each tip of each crack.
The number and the shape of the crack that can be model by the technique are unlimited. Over the crack tip

element of small length 2a we interpolate the crack opening displacement by

Se(X) = /1 —x2 o
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Fig. 11. Double edge cracks in a square plate (W = H) in tension.

Table 10
Stress intensity factors for double edge cracks in a square plate (H/W =1) under tension (Fig. 11), where

n(a/W,H/W) =K;/{o+\/2W tan(na/2W)}

a/W n(a/ W HW)

Isotropic Bowie (1964) $(0.0.0]
0.1 1.13(1.13) 1.13 1.14
0.2 1.16(1.16) 1.13 1.17
0.4 1.19(1.19) 1.16 1.20
0.8 1.05(1.05) 1.01 1.05

The values in the parentheses are taken from Denda and Dong (1999).

along the local crack axis X;(= x;/a). The resulting displacement contribution is given by

d
uj()(

3
A Y- Loty Ri(Z,)

k=1

X],XQ) =-3

o

3
=1
and the stress intensity factors by

T 1
K1) = /332 L D Luad)

where
Ri(Z) = Z,—\)(Z,)" — 1,

and Z, = z,/a. The stress intensity factors, along with the unknown boundary displacements and tractions,
are determined in the main processing; no post processing is required. The accuracy of the stress intensity
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factors is comparable to that obtained by the well established RGCE that requires the evaluation of
conservation integral in the post processing.
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